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TSPipe accelerates training of Knowledge Distillation (KD) and Self-Supervised Learning (SSL) networks with pipelines.

Motivation: Accelerating KD and SSL

Teacher-Student (TS) Framework
» Teacher-student (TS) framework is commonly adopted in Knowledge Distillation (KD)

How TSPipe works Experimental Results

Key ldea
+ Separate the scheduling of student and teacher networks

Training Throughput (Seq/s)
Param. Inter-layer MP GPipe TSPipe (Ours)

Method Architecture

+ Also adopted by many momentum-based Self-Supervised Learning (SSL) networks * Interleave teacher’s forward pass between the computations of student networks ViT-Large / ResNet-101  303M /43 M 57.41 136.8  204.4 (3.56x)

, , , i Startup teration 1 teration 2 . ViT-Large / ResNet-152 303M /58 M 4'7.24 126.6  180.7 (3.82x)

+ Teacher network &, is slowly updated as an exponential moving average of student 6, e - . .. - Soft Target (Hinton etal., 2015) - (or 1y o/ ResNet- 101 631 M /43 M 15 65 100.6  148.5 (4.17x)

. o ‘ GPU 1 ViT-Huge / ResNet-152 631 M /58 M 30.30 84.03 141.8 (4.68x)

How can we train large models that do not fit in a single GPU GPU 2 - BERT-xlarge L3B/450M 6282 1133  193.4 (3.08%)

. . . - ‘ - DistillBERT (Sanh et al., 2019)

+ Some large models cannot be trained as a whole, even with a cutting-edge GPU ; gackward ) Fory Forv Backward _J  Forward BERT-xxlarge 39B/1.2B 30.36 75.22  98.82 (3.25x)
| . | | . | | | | teachgr | studet?t | teachgr student ntimization | studeqt | teachgr student 5 ntimization | studeqt ResNet-18 1TM 346 3 5851 7285 (2.10

+ Model Parallelism split a model into multiple partitions and train with multiple GPUS val . Aevdl . bvdl Ve I N el e5NEn - - = (2.10%)

, o N BYOL (Grill et al.. 2020) ResNet-50 26 M 102.0 232.0 295.8 (2.90x)

- serious GPU under-utilization due to the dependency between partitions Hit etak., ResNet-101 45 M 71 25 162.7 243.0 (3.41x)

- Pipeline Parallelism pipelines computation of each batch for better GPU utilization SSL ResNet-152 6OM  53.33 136.9 201.6 (3.78x)

- Approaches that preserve training semantics (e.g. GPipe) fail to fully utilize GPUs Bt o _ _ ViI-Small 22M 99.42 259.9 + 365.7 (3.68x)

. . e | | | MoCov3 (Ch . ViT-Base 86 M 35.06 106.7  176.6 (5.04x)

—> Approaches that achieve higher utilization incur overheads (e.g. memory, accuracy) - Use forward pass of the teacher from the previous iteration and 0Co-v3 (Chenetal., 2021)  \ipy oo 307 M 1131 33.95  54.70 (4.84x)

| | \ | | L forward pass of the student from the current iteration to compute loss ViT-Huge 632M 5.496 18.71  35.26 (6.42x)
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+ Schedules 100% GPU pipeline without pipeline bubbles and activation stashing

Attaining high model accuracy

Training throughput (seqg/s) on 8 V100 GPUs
+ Achieve up to 6.42x (with 8 GPUs) and 12.15x (with 16 GPUSs) higher

training throughput than Inter-layer Model Parallelism (MP)

Inter-Layer Model Parallelism Pipeline Parallelism (GPipe)

+ Many existing Pipeline Parallelism schemes change training schemes to train faster

9 .. 9 r + Best performance improvement in large models (MoCo-v3 + ViT-Huge)
Challenge n+1 < optimizer(6,, VL, ¢, 1,1) . I | | PN
| | S Ueuall h model <ta Hich d q - Comes from higher utilization of internal computing resources in GPUS
- Can we fully schedule the computations despite the dependency between them? >Ually COTNES WILH TOAer Staleness, Whith degrades atlUracy
L time . .
+ To compute the teacher &,,,, we need to wait for student 8,,, to be computed U — S— >  Effectiveness of Asymmetric Parameter Update
- Can we eliminate pipeline bubbles by inserting computations while GPUs are idle? 23;1 3456 l.4 2 5 o B c : .E Vanilla TSPipe
+ Reordering computations may require activation stashing for gradient calculation GPU3 | | 456 544 - Dataset Topl Tops Top Tops
Backward Backward orward Forward Sackwarc Op“ml'ze[ STL10 (Coates et al., 2011) 81.73 £ 027 99.41 £006 81.75 £032 (+0.02) 99.40 003 (-0.01)
Forward Optimize Forward Optimize Teacher 4 CIFAR10 (Krizhevsky et al., 2009) 74.776 £ 034 98.60 +0.08 75.24 +0.52 (+0.48) 98.73 £ 0.09 (+0.13)
Student 6,, 14 Student 6, Model $n—1 Sn S+ — CIFAR100 (Krizhevsky et al., 2009) 48.54 £ 034 78.46 £0.16 49.79 x 032 (+1.25) 79.22 +0.50 (+0.76)
Slf/‘lfj:t 0., 9, 6, .1 ImageNet100 (Russakovsky et al., 2015) 64.18 +0.61 88.12 +033 64.24 +0.23 (+0.06) 88.24 +0.22 (+0.12)
, Teacher , Teacher . . . .
Weighted average St Weighted average Sn+2 + We leverage that teacher network &, ,=¢, (since &,,,<té€,+(1-1)0,,, , where t=1) Linear Evaluation Accuracy (BYOL with ResNet-18)
- Preserve model accuracy by introducing asymmetric parameter update as + TSPipe preserves the final model accuracy without any tradeotts
| Teacher network does not need a backward pass 0r+1 < optimizer(6,,, Vg, Lo, ¢ ., N) + Ablation study shows significant accuracy drops (up to -5.9%p)

—> Teacher network's forward pass can be scheduled more leniently without activation stashing

where we make only the teacher network stale without asymmetric parameter update



