

TSPipe accelerates training of Knowledge Distillation (KD) and Self-Supervised Learning (SSL) networks with pipelines.

Motivation: Accelerating KD and SSL

Teacher-Student (TS) Framework

- Teacher-student (TS) framework is commonly adopted in Knowledge Distillation (KD)
- Also adopted by many momentum-based **Self-Supervised Learning (SSL)** networks
- Teacher network ξ_n is slowly updated as an exponential moving average of student θ_n

How can we train large models that do not fit in a single GPU

- Some large models cannot be trained as a whole, even with a cutting-edge GPU
- Model Parallelism split a model into multiple partitions and train with multiple GPUs → serious GPU under-utilization due to the dependency between partitions
- Pipeline Parallelism pipelines computation of each batch for better GPU utilization → Approaches that preserve training semantics (e.g. GPipe) fail to fully utilize GPUs
- → Approaches that achieve higher utilization **incur overheads** (e.g. memory, accuracy)

Inter-Layer Model Parallelism

Challenge

- Can we fully schedule the computations despite the dependency between them?
- To compute the teacher ξ_{n+1} , we need to wait for student θ_{n+1} to be computed
- Can we eliminate pipeline bubbles by inserting computations while GPUs are idle?
- Reordering computations may require activation stashing for gradient calculation

→ Teacher network's forward pass can be scheduled more leniently without activation stashing

TSPipe: Learn from Teacher Faster with Pipelines

Hwijoon Lim, Yechan Kim, Sukmin Yun, Jinwoo Shin, Dongsu Han Korea Advanced Institute of Science and Technology (KAIST)

How TSPipe works

- $\theta_{n+1} \leftarrow \text{optimizer}(\theta_n, \nabla_{\theta_n} \mathcal{L}_{\theta_n, \xi_{n-1}}, \eta)$

where we make only the teacher network stale

Pipeline Parallelism (GPipe)

without asymmetric parameter update

Experimental Results

			Training Throughput (Seq/s)			
	Architecture	Param.	Inter-layer MP	GPipe	TSPipe (Ours)	
al., 2015)	ViT-Large / ResNet-101	303 M / 43 M	57.41	136.8	204.4 (3.56 x)	
	ViT-Large / ResNet-152	303 M / 58 M	47.24	126.6	180.7 (3.82 x)	
	ViT-Huge / ResNet-101	631 M / 43 M	35.65	100.6	148.5 (4.17 x)	
	ViT-Huge / ResNet-152	631 M / 58 M	30.30	84.03	141.8 (4.68 x)	
.1., 2019)	BERT-xlarge	1.3 B / 480 M	62.82	113.3	193.4 (3.08 x)	
	BERT-xxlarge	3.9 B / 1.2 B	30.36	75.22	98.82 (3.25 x)	
20)	ResNet-18	11 M	346.3	585.1	728.5 (2.10 x)	
	ResNet-50	26 M	102.0	232.0	295.8 (2.90 x)	
	ResNet-101	45 M	71.25	162.7	243.0 (3.41 x)	
	ResNet-152	60 M	53.33	136.9	201.6 (3.78 x)	
2021)	ViT-Small	22 M	99.42	259.9	365.7 (3.68x)	
	ViT-Base	86 M	35.06	106.7	176.6 (5.04x)	
	ViT-Large	307 M	11.31	33.95	54.70 (4.84x)	
	ViT-Huge	632 M	5.496	18.71	35.26 (6.42x)	

Training throughput (seq/s) on 8 V100 GPUs

 Achieve up to 6.42x (with 8 GPUs) and 12.15x (with 16 GPUs) higher training throughput than Inter-layer Model Parallelism (MP)

• **Best performance improvement in large models** (MoCo-v3 + ViT-Huge)

→ Comes from higher utilization of internal computing resources in GPUs

Effectiveness of Asymmetric Parameter Update

	Van	nilla	TSPipe			
	Top1	Top5	Top1		Top5	
2011)	81.73 ± 0.27	99.41 ± 0.06	81.75 ± 0.32	(+0.02)	99.40 ± 0.03	(-0.01)
v et al., 2009)	74.76 ± 0.34	98.60 ± 0.08	75.24 ± 0.52	(+0.48)	98.73 ± 0.09	(+0.13)
xy et al., 2009)	48.54 ± 0.34	78.46 ± 0.16	49.79 ± 0.32	(+1.25)	79.22 ± 0.50	(+0.76)
kovsky et al., 2015)	64.18 ± 0.61	88.12 ± 0.33	64.24 ± 0.23	(+0.06)	88.24 ± 0.22	(+0.12)

Linear Evaluation Accuracy (BYOL with ResNet-18)

TSPipe preserves the final model accuracy without any tradeoffs

Ablation study shows significant accuracy drops (up to -5.9%p)